Quantification and molecular characterization of enteric viruses detected in effluents from two hospital wastewater treatment plants

Water Res. 2011 Jan;45(3):1287-97. doi: 10.1016/j.watres.2010.10.012. Epub 2010 Oct 20.

Abstract

Hospital wastewater has been described as an important source of spreading pathogenic microorganisms in the environment. However, there are few studies reporting the presence and concentrations of gastroenteric viruses and hepatitis A viruses in these environmental matrices. The aim of this study was to assess the contamination by viruses responsible for acute gastroenteritis and hepatitis derived from hospital wastewater treatment plants (WWTPs). Rotavirus A (RV-A), human adenoviruses (HAdV), norovirus genogroup I and II (NoV GI/GII) and hepatitis A viruses (HAV) were detected and quantified in sewage samples from two WWTPs located in Rio de Janeiro (Brazil) that operates different sewage treatments. WWTP-1 uses an Upflow Anaerobic Sludge Blanket (UASB reactor) and three serial anaerobic filters while WWTP-2 uses aerobic processes, activated sludge with extended aeration and final chlorination of the effluents. Viruses' detection was investigated by using conventional PCR/RT-PCR, quantitative real-time PCR (qPCR) and partial sequencing of the genome of the viruses detected. Rate of viruses detection ranged from 7% (NoV GI in WWTP-1) to 95% (RV-A in WWTP-2) and genome from all viruses were detected. The most prevalent genotypes were RV-A SG I, HAdV species D and F, NoV GII/4 and HAV subgenotype IA. Mean values of viral loads (genome copies (GC)/ml) obtained in filtered effluents from anaerobic process was 1.9 × 10(3) (RV-A), 2.8 × 10(3) (HAdV) and 2.4 × 10(3) (NoV GII). For chlorinated effluents from activated sludge process, the mean values of viral loads (GC/ml) was 1.2 × 10(5) (RV-A), 1.4 × 10(3) (HAdV), 8.1 × 10(2) (NoV GII) and 2.8 × 10(4) (HAV). Data on viral detection in treated effluents of hospital WWTPs confirmed the potential for environmental contamination by viruses and could be useful to establish standards for policies on wastewater management.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anaerobiosis
  • Enterovirus / genetics*
  • Enterovirus / isolation & purification
  • Hospitals*
  • Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sewage / virology*
  • Waste Disposal, Fluid*

Substances

  • Sewage