Photochemical and thermal hydrogen production from water catalyzed by carboxylate-bridged dirhodium(II) complexes

Dalton Trans. 2010 Dec 14;39(46):11218-26. doi: 10.1039/c0dt00741b. Epub 2010 Oct 25.

Abstract

A series of dinuclear Rh(II) complexes, [Rh(2)(μ-OAc)(4)(H(2)O)(2)] (HOAc = acetic acid) (1), [Rh(2)(μ-gly)(4)(H(2)O)(2)] (Hgly = glycolic acid) (2), [Rh(2)(μ-CF(3)CO(2))(4)(acetone)(2)] (3), and [Rh(2)(bpy)(2)(μ-OAc)(2)(OAc)(2)] (4), were found to serve as H(2)-evolving catalysts in a three-component system consisting of tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)(3)(2+)), methylviologen (MV(2+)), and ethylenediaminetetraacetic acid disodium salt (EDTA). It was also confirmed that thermal reduction of water into H(2) by MV(+)˙, in situ generated by the bulk electrolysis of MV(2+), is effectively promoted by 1 as a H(2)-evolving catalyst. The absorption spectra of the photolysis solution during the photocatalysis were monitored up to 6 h to reveal that the formation of photochemical or thermal byproducts of MV(+)˙ is dramatically retarded in the presence of the Rh(II)(2) catalysts, for the H(2) formation rather than the decomposition of MV(+)˙ becomes predominant in the presence of the Rh(II)(2) catalysts. The stability of the Rh(II)(2) dimers was confirmed by absorption spectroscopy, (1)H NMR, and ESI-TOF mass spectroscopy. The results indicated that neither elimination nor replacement of the equatorial ligands take place during the photolysis, revealing that one of the axial sites of the Rh(2) core is responsible for the hydrogenic activation. The quenching of Ru*(bpy)(3)(2+) by 1 was also investigated by luminescence spectroscopy. The rate of H(2) evolution was found to decrease upon increasing the concentration of 1, indicating that the quenching of Ru*(bpy)(3)(2+) by the Rh(ii)(2) species rather than by MV(2+) becomes predominant at the higher concentrations of 1. The DFT calculations were carried out for several possible reaction paths proposed (e.g., [Rh(II)(2)(μ-OAc)(4)(H(2)O)] + H(+) and [Rh(II)(2)(μ-OAc)(4)(H(2)O)] + H(+) + e(-)). It is suggested that the initial step is a proton-coupled electron transfer (PCET) to the Rh(II)(2) dimer leading to the formation of a Rh(II)Rh(III)-H intermediate. The H(2) evolution step is suggested to proceed either via the transfer of another set of H(+) and e(-) to the Rh(II)Rh(III)-H intermediate or via the homolytic radical coupling through the interaction of two Rh(II)Rh(III)-H intermediates.