Effect of carboxymethylation conditions on the water-binding capacity of chitosan-based superabsorbents

Carbohydr Res. 2010 Dec 10;345(18):2683-9. doi: 10.1016/j.carres.2010.09.024. Epub 2010 Sep 25.

Abstract

A superabsorbent polymer (SAP) from chitosan was provided via carboxymethylation of chitosan, followed by cross-linking with glutaraldehyde and freeze-drying. This work was focused on an investigation of the effects of monochloroacetic acid (MCAA), sodium hydroxide, and reaction time on preparation of carboxymethyl chitosan (CMCS). The CMCS products were characterized using FTIR spectroscopy, and their degrees of substitution (DS) were measured using conductimetry and FTIR analysis. The highest DS value was obtained when the carboxymethylation reaction was carried out using 1.75g MCAA and 1.75g NaOH per g of chitosan in 4h. The water solubilities of the CMCS products at various pHs were also evaluated, and the results indicated a significant impact of the reaction parameters on the solubility of CMCS. The CMCSs with the highest DS value resulted in SAPs having the highest water-binding capacity (WBC). The WBC of the best SAP measured after 10min exposure in distilled water, 0.9% NaCl solution, synthetic urine, and artificial blood was 104, 33, 30, and 57g/g, respectively. The WBC of this SAP at pH 2-9 passed a maximum at pH 6.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorption
  • Chitosan / analogs & derivatives*
  • Chitosan / chemistry*
  • Hydrogen-Ion Concentration
  • Polymers / chemistry
  • Spectroscopy, Fourier Transform Infrared
  • Water / chemistry

Substances

  • Polymers
  • carboxymethyl-chitosan
  • Water
  • Chitosan