Effects of feeding increasing levels of wet corn gluten feed on production and ruminal fermentation in lactating dairy cows

J Dairy Sci. 2010 Nov;93(11):5329-37. doi: 10.3168/jds.2010-3310.

Abstract

An experiment was conducted to evaluate the effects of increasing dietary inclusion rates of wet corn gluten feed (WCGF; Sweet Bran; Cargill Inc., Blair, NE) on milk production and rumen parameters. Four primiparous and 4 multiparous ruminally cannulated Holstein cows averaging 90±13 d in milk (mean ± SD) were randomly assigned to 1 of 4 sequences in a replicated 4 × 4 Latin square experiment with 28-d periods. Treatments were diets containing 0, 11, 23, and 34% WCGF on a dry matter basis; alfalfa hay, corn silage, corn grain, soybean meal, expeller soybean meal, and mineral supplements were varied to maintain similar nutrient concentrations across diets. Performance and measures of ruminal fermentation were monitored. Linear and quadratic effects of increasing WCGF inclusion rate were assessed using mixed-model analysis. Increasing dietary WCGF linearly increased dry matter intake (26.7, 25.9, 29.3, and 29.7 kg/d for 0, 11, 23, and 34% WCGF, respectively) and milk production (36.8, 37.0, 40.1, and 38.9 kg/d). Concentrations of milk components did not differ among treatments; however, protein and lactose yields increased linearly and fat yield tended to increase linearly when more WCGF was fed. This led to greater production of energy-corrected milk (38.2, 38.8, 41.7, and 40.4 kg/d) and solids-corrected milk (35.2, 35.7, 38.5, and 37.2 kg/d), but efficiency of production linearly decreased. Increased WCGF in the diet tended to linearly decrease ruminal pH (6.18, 6.12, 6.14, and 5.91), possibly because mean particle size was below typical recommendations for all diets, and diets with greater proportions of WCGF had a smaller mean particle size. Ruminal acetate concentration decreased linearly and propionate increased linearly as WCGF inclusion rate increased. Treatments had a quadratic effect on ammonia concentration, with greater concentrations for the 0 and 34% WCGF diets. In situ digestibility of soybean hulls showed a significant diet-by-time interaction, and increasing dietary levels of WCGF linearly decreased in situ neutral detergent fiber disappearance at 24h. Change in body condition score increased linearly with increasing WCGF inclusion rate. Results indicate that adding WCGF to dairy rations can increase energy-corrected milk yield, and this increase appears to be driven, at least in part, by an increase in dry matter intake.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Feed
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Cattle / metabolism
  • Cattle / physiology*
  • Eating / physiology
  • Energy Metabolism
  • Female
  • Fermentation
  • Glutens / metabolism*
  • Lactation / physiology*
  • Milk / metabolism
  • Rumen / metabolism*
  • Zea mays / metabolism*

Substances

  • Glutens