Dosimetric characterization of a multileaf collimator for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000

Med Phys. 2010 Sep;37(9):4684-91. doi: 10.1118/1.3480510.

Abstract

Purpose: To present the dosimetric characterization of a multileaf collimator (MLC) for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000.

Methods: MHI-TM2000 has an x-ray head composed of an ultrasmall linear accelerator guide and a system-specific MLC. The x-ray head can rotate along the two orthogonal gimbals (pan and tilt rotations) up to +/- 2.5 degrees, which swings the beam up to +/- 41.9 mm in each direction from the isocenter on the isocenter plane perpendicular to the beam. The MLC design is a single-focus type, has 30 pairs of 5 mm thick leaves at the isocenter, and produces a maximum field size of 150 x 150 mm2. Leaf height and length are 110 and 260 mm, respectively. Each leaf end is circular, with a radius of curvature of 370 mm. The distance that each leaf passes over the isocenter is 77.5 mm. Radiation leakage between adjacent leaves is minimized by an interlocking tongue-and-groove (T&G) arrangement with the height of the groove part 55 mm. The dosimetric characterizations including field characteristics, leaf position accuracy, leakage, and T&G effect were evaluated using a well-commissioned 6 MV photon beam, EDR2 films (Kodak, Rochester, NY), and water-equivalent phantoms. Furthermore, the field characteristics and leaf position accuracy were evaluated under conditions of pan or tilt rotation.

Results: The differences between nominal and measured field sizes were within +/- 0.5 mm. Although the penumbra widths were greater with wider field size, the maximum width was < 5.5 mm even for the fully opened field. Compared to the results of field characteristics without pan or tilt rotation, the variation in field size, penumbra width, flatness, and symmetry was within +/- 1 mm/l% at the maximum pan or tilt rotational angle. The leaf position accuracy was 0.0 +/- 0.1 mm, ranging from -0.3 to 0.2 mm at four gantry angles of 0 degrees, 90 degrees, 180 degrees, and 270 degrees with and without pan or tilt rotation. The interleaf leakage was up to 0.21%, whereas the intraleaf leakage was < 0.12%. T&G decreased the doses by 10.7%, on average.

Conclusions: This study demonstrated that MHI-TM2000 has the capability for high leaf position accuracy and low leakage, leading to highly accurate intensity-modulated radiotherapy delivery. Furthermore, substantial changes in the dosimetric data on field characteristics and leaf position accuracy were not observed even at the maximum pan or tilt rotation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Radiometry
  • Radiotherapy / instrumentation*
  • Radiotherapy / methods
  • Radiotherapy Dosage
  • Rotation