Finite size effects on aluminum/Teflon reaction channels under combustive environment: a Rice-Ramsperger-Kassel-Marcus and transition state theory study of fluorination

J Chem Phys. 2010 Oct 7;133(13):134305. doi: 10.1063/1.3480020.

Abstract

The effect of particle size on combustion efficiency is an important factor in combustion research. Gas-phase aluminum clusters in oxidizing environment constitute a relatively simple and extensively studied system. In an attempt to underscore the correlation between electronic structure, finite size effect, and reactivity in small aluminum clusters, reactions between aluminum, [Al(13)](-) cluster, and Teflon decomposition fragments were studied using theoretical calculations at the density functional theoretical level. The unimolecular rate constants calculated using transition state and Rice-Ramsperger-Kassel-Marcus theory show that reactions with COF and CF(2) species with aluminum are faster than those involving CF(3) and COF(2). The results show that the kinetic barriers along different exothermic reaction channels correlate with the trends in HOMO(R)-HOMO(TS) (HOMO denotes highest occupied molecular orbital) energy gap and related shifts of the HOMO levels of reactants. Overall reactions involving carbonyl fluoride species (COF and COF(2)) lead to CO elimination and fluorination of the Al cluster. The CF(3)/CF(2) fragments lead to stable multicenter Al-C bond formation on the fluorinated Al cluster surface. Temperature-, energy-, and pressure-dependent rate constants are provided for extrapolating the expected reaction kinetics to conditions similar to known combustion reactions.