Probability landscape of heritable and robust epigenetic state of lysogeny in phage lambda

Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18445-50. doi: 10.1073/pnas.1001455107. Epub 2010 Oct 11.

Abstract

Computational studies of biological networks can help to identify components and wirings responsible for observed phenotypes. However, studying stochastic networks controlling many biological processes is challenging. Similar to Schrödinger's equation in quantum mechanics, the chemical master equation (CME) provides a basic framework for understanding stochastic networks. However, except for simple problems, the CME cannot be solved analytically. Here we use a method called discrete chemical master equation (dCME) to compute directly the full steady-state probability landscape of the lysogeny maintenance network in phage lambda from its CME. Results show that wild-type phage lambda can maintain a constant level of repressor over a wide range of repressor degradation rate and is stable against UV irradiation, ensuring heritability of the lysogenic state. Furthermore, it can switch efficiently to the lytic state once repressor degradation increases past a high threshold by a small amount. We find that beyond bistability and nonlinear dimerization, cooperativity between repressors bound to O(R)1 and O(R)2 is required for stable and heritable epigenetic state of lysogeny that can switch efficiently. Mutants of phage lambda lack stability and do not possess a high threshold. Instead, they are leaky and respond to gradual changes in degradation rate. Our computation faithfully reproduces the hair triggers for UV-induced lysis observed in mutants and the limitation in robustness against mutations. The landscape approach computed from dCME is general and can be applied to study broad issues in systems biology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacteriophage lambda / genetics*
  • Bacteriophage lambda / physiology*
  • Bacteriophage lambda / radiation effects
  • Epigenesis, Genetic
  • Escherichia coli / virology
  • Lysogeny / genetics*
  • Lysogeny / radiation effects
  • Models, Biological*
  • Repressor Proteins / physiology
  • Stochastic Processes
  • Ultraviolet Rays
  • Viral Proteins / physiology

Substances

  • Repressor Proteins
  • Viral Proteins
  • repressor protein C1, bacteriophage