Injection-seeded pulsed alexandrite laser for differential absorption lidar application

Appl Opt. 1994 Jun 20;33(18):3941-50. doi: 10.1364/AO.33.003941.

Abstract

We describe a Q-switched alexandrite laser injection seeded with a cw single-mode titanium-sapphire laser. The reported experimental results show that this system meets the frequency stabilization required for differential absorption lidar measurement of humidity, pressure, and temperature. The emission of the cw titanium-sapphire master oscillator is locked to an atmospheric absorption line by means of a servoloop with derivative spectroscopy. The spectral position is stabilized within ±3.5 × 10(-4) cm(-1) (10 MHz) of the peak of the line over 1 hr. The alexandrite laser emits pulses of 30 mJ in 500 ns, with a spectral linewidth of ≈ 3.3 × 10(-3) cm(-1) (100 MHz). The position of the centroid of the emitted spectrum has a standard deviation of 6 × 10(-4) cm(-1) (18 MHz) and is held within ±1.3 × 10(-3) cm(-1) (40 MHz) of the peak of the absorption line over 1 h.