Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities

Appl Environ Microbiol. 2010 Dec;76(23):7843-53. doi: 10.1128/AEM.01045-10. Epub 2010 Oct 8.

Abstract

Soil microorganisms drive critical functions in plant-soil systems. As such, various microbial properties have been proposed as indicators of soil functioning, making them potentially useful in evaluating the recovery of polluted soils via phytoremediation strategies. To evaluate microbial responses to metal phytoextraction using hyperaccumulators, a microcosm experiment was carried out to study the impacts of Zn and/or Cd pollution and Thlaspi caerulescens growth on key soil microbial properties: basal respiration; substrate-induced respiration (SIR); bacterial community structure as assessed by PCR-denaturing gradient gel electrophoresis (DGGE); community sizes of total bacteria, ammonia-oxidizing bacteria, and chitin-degrading bacteria as assessed by quantitative PCR (Q-PCR); and functional gene distributions as determined by functional gene arrays (GeoChip). T. caerulescens proved to be suitable for Zn and Cd phytoextraction: shoots accumulated up to 8,211 and 1,763 mg kg(-1) (dry weight [DW]) of Zn and Cd, respectively. In general, Zn pollution led to decreased levels of basal respiration and ammonia-oxidizing bacteria, while T. caerulescens growth increased the values of substrate-induced respiration (SIR) and total bacteria. In soils polluted with 1,000 mg Zn kg(-1) and 250 mg Cd kg(-1) (DW), soil bacterial community profiles and the distribution of microbial functional genes were most affected by the presence of metals. Metal-polluted and planted soils had the highest percentage of unique genes detected via the GeoChip (35%). It was possible to track microbial responses to planting with T. caerulescens and to gain insight into the effects of metal pollution on soilborne microbial communities.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacteria / classification
  • Bacteria / drug effects*
  • Bacteria / genetics
  • Biodiversity*
  • Cadmium / metabolism
  • Cadmium / toxicity*
  • DNA Fingerprinting
  • Electrophoresis, Polyacrylamide Gel
  • Genes, Bacterial
  • Nucleic Acid Denaturation
  • Polymerase Chain Reaction
  • Soil Microbiology*
  • Soil Pollutants / metabolism
  • Soil Pollutants / toxicity*
  • Thlaspi / growth & development*
  • Thlaspi / metabolism
  • Zinc / metabolism
  • Zinc / toxicity*

Substances

  • Soil Pollutants
  • Cadmium
  • Zinc