Dynamics within site selectively templated and tagged xerogel sensor platforms

Appl Spectrosc. 2010 Oct;64(10):1073-7. doi: 10.1366/000370210792973569.

Abstract

In a nitrobenzo-2-oxa-1,3-diazole (NBD) -based, 9-anthrol-responsive site selectively templated and tagged xerogel (SSTTX) sensor platform, there are two reporter molecule site types (responsive and non-responsive) that are responsible for the observed fluorescence signals. These NBD sites function independently. Site 1 alone binds the target analyte and yields an analyte-dependent signal. This signal arises from analyte binding decreasing the photo-induced electron transfer (PET) efficiency between a strategically placed amine residue and the excited NBD reporter molecule within the template site. Site 2 does not respond to analyte, it is not fully formed, and it manifests itself as a background signal. In an n-octyl residue-free SSTTX, the local microviscosity sensed by the site 1 NBD reporter molecules in the absence and presence of target analyte is ∼260 cP and ∼540 cP, respectively. These local microviscosity values are substantially greater in comparison to free NBD dissolved in THF (η = 0.46 cP at 298 K, ϕ ∼25 ps). As the SSTTX n-octyl content is increased, the local microviscosity sensed by the site 1 NBD reporter molecules in the absence and presence of target analyte is ∼360 cP and ∼760 cP, respectively. This behavior is consistent with the n-octyl chains crowding the cybotactic region surrounding the site 1 NBD reporter molecules. This n-octyl-induced site 1 "crowding" is also associated with improved analyte binding to site 1 and better overall SSTTX analytical performance.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anthracenes / chemistry
  • Azoles / chemistry*
  • Fluorescence Polarization / methods*
  • Gels / chemistry*
  • Models, Molecular
  • Molecular Imprinting*
  • Molecular Probe Techniques*
  • Nitrobenzenes / chemistry*
  • Silanes / chemistry*
  • Silicon Dioxide / chemistry
  • Viscosity

Substances

  • 7-nitrobenz-2-oxa-1,3-diazol-4-yl
  • Anthracenes
  • Azoles
  • Gels
  • Nitrobenzenes
  • Silanes
  • Silicon Dioxide