High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage

Opt Lett. 2010 Oct 1;35(19):3246-8. doi: 10.1364/OL.35.003246.

Abstract

Fast, compact, and power-efficient silicon microcavity electro-optic modulators are expected to be critical components for chip-level optical interconnects. It is highly desirable that these modulators can be driven by voltage swings of 1 V or less to reduce power dissipation and make them compatible with voltage supply levels associated with current and future complementary metal-oxide-semiconductor technology nodes. Here, we present a silicon racetrack resonator modulator that achieves over 8 dB modulation depth at 12.5 Gbps with a 1 V swing. In addition, the use of a racetrack resonator geometry relaxes the tight lithography resolution requirements typically associated with microring resonators and enhances the ability to use common lithographic optical techniques for their fabrication.