Single-molecule fluorescence imaging of nanocatalytic processes

Chem Soc Rev. 2010 Dec;39(12):4560-70. doi: 10.1039/b909052p. Epub 2010 Oct 1.

Abstract

This tutorial review covers recent developments in using single-molecule fluorescence microscopy to study nanoscale catalysis. The single-molecule approach enables following catalytic and electrocatalytic reactions on nanocatalysts, including metal nanoparticles and carbon nanotubes, at single-reaction temporal resolution and nanometer spatial precision. Real-time, in situ, multiplexed measurements are readily achievable under ambient solution conditions. These studies provide unprecedented insights into catalytic mechanism, reactivity, selectivity, and dynamics in spite of the inhomogeneity and temporal variations of catalyst structures. Prospects, generality, and limitations of the single-molecule fluorescence approach for studying nanocatalysis are also discussed.