Impact on interface spin polarization of molecular bonding to metallic surfaces

Phys Rev Lett. 2010 Aug 13;105(7):077201. doi: 10.1103/PhysRevLett.105.077201. Epub 2010 Aug 13.

Abstract

We have studied the repercussion of the molecular adsorption mechanism on the electronic properties of the interface between model nonmagnetic or magnetic metallic surfaces and metallo-organic phthalocyanines molecules (Pcs). Our intertwined x-ray absorption spectroscopy experiments and computational studies reveal that manganese Pc (MnPc) is physisorbed onto a Cu(001) surface and retains the electronic properties of a free molecule. On the other hand, MnPc is chemisorbed onto Co(001), leading to a dominant direct exchange interaction between the Mn molecular site and the Co substrate. By promoting an interfacial spin-polarized conduction state on the molecule, these interactions reveal an important lever to tailor the spintronic properties of hybrid organic-metallic interfaces.