Plasma barodiffusion in inertial-confinement-fusion implosions: application to observed yield anomalies in thermonuclear fuel mixtures

Phys Rev Lett. 2010 Sep 10;105(11):115005. doi: 10.1103/PhysRevLett.105.115005. Epub 2010 Sep 10.

Abstract

The observation of large, self-generated electric fields (≥10(9) V/m) in imploding capsules using proton radiography has been reported [C. K. Li, Phys. Rev. Lett. 100, 225001 (2008)]. A model of pressure gradient-driven diffusion in a plasma with self-generated electric fields is developed and applied to reported neutron yield deficits for equimolar D3He [J. R. Rygg, Phys. Plasmas 13, 052702 (2006)] and (DT)3He [H. W. Herrmann, Phys. Plasmas 16, 056312 (2009)] fuel mixtures and Ar-doped deuterium fuels [J. D. Lindl, Phys. Plasmas 11, 339 (2004)]. The observed anomalies are explained as a mild loss of deuterium nuclei near capsule center arising from shock-driven diffusion in the high-field limit.