Limits of sensing temporal concentration changes by single cells

Phys Rev Lett. 2010 Jun 18;104(24):248101. doi: 10.1103/PhysRevLett.104.248101. Epub 2010 Jun 14.

Abstract

Berg and Purcell [Biophys. J. 20, 193 (1977)] calculated how the accuracy of concentration sensing by single-celled organisms is limited by noise from the small number of counted molecules. Here we generalize their results to the sensing of concentration ramps, which is often the biologically relevant situation (e.g., during bacterial chemotaxis). We calculate lower bounds on the uncertainty of ramp sensing by three measurement devices: a single receptor, an absorbing sphere, and a monitoring sphere. We contrast two strategies, simple linear regression of the input signal versus maximum likelihood estimation, and show that the latter can be twice as accurate as the former. Finally, we consider biological implementations of these two strategies, and identify possible signatures that maximum likelihood estimation is implemented by real biological systems.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Bacteria / cytology
  • Bacteria / metabolism
  • Chemotaxis / physiology
  • Models, Biological*
  • Receptors, Cell Surface / metabolism*
  • Single-Cell Analysis*

Substances

  • Receptors, Cell Surface