Separation between low-energy hole dynamics and spin dynamics in a frustrated magnet

Phys Rev Lett. 2010 Jun 4;104(22):226404. doi: 10.1103/PhysRevLett.104.226404. Epub 2010 Jun 3.

Abstract

An angle-resolved photoemission spectroscopy (ARPES) study is reported on a Mott insulator NiGa2S4 in which Ni2+ (S=1) ions form a triangular lattice and the Ni spins do not order even in its ground state. The first ARPES study on the two-dimensional spin-disordered system shows that low-energy hole dynamics at high temperatures is characterized by wave vectors Q(E) which are different from wave vectors Q(M) dominating low-energy spin excitations at low temperatures. The unexpected difference between Q(E) and Q(M) is deeply related to charge fluctuation across the Mott gap in the frustrated lattice and is a key issue to understand the spin-disordered ground states in Mott insulators.