EXP6 fluids at extreme conditions modeled by two-Yukawa potentials

J Chem Phys. 2010 Sep 7;133(9):094503. doi: 10.1063/1.3478220.

Abstract

A two-Yukawa representation of the EXP6 fluids at supercritical temperatures and high pressures has been developed and examined using molecular simulations. A uniquely defined mapping of the repulsive part of the EXP6 potential curve onto the two-Yukawa potential is used. Two ranges of temperatures, one encountered in geochemical applications (T(geo) range) and the other at conditions of detonations (T(det) range), are considered and it is shown that the local structures of both fluids are practically identical. Deviations between the EXP6 and two-Yukawa potential functions at intermediate separations lead to differences in the thermodynamic properties of the two fluids at lower temperatures of the T(geo) range; at higher temperatures and in the high T(det) temperature range both the structural and thermodynamic properties of the EXP6 and two-Yukawa fluids are practically identical.