Quantitative understanding of cell signaling: the importance of membrane organization

Curr Opin Biotechnol. 2010 Oct;21(5):677-82. doi: 10.1016/j.copbio.2010.08.006. Epub 2010 Sep 9.

Abstract

Systems biology modeling of signal transduction pathways traditionally employs ordinary differential equations, deterministic models based on the assumptions of spatial homogeneity. However, this can be a poor approximation for certain aspects of signal transduction, especially its initial steps: the cell membrane exhibits significant spatial organization, with diffusion rates approximately two orders of magnitude slower than those in the cytosol. Thus, to unravel the complexities of signaling pathways, quantitative models must consider spatial organization as an important feature of cell signaling. Furthermore, spatial separation limits the number of molecules that can physically interact, requiring stochastic simulation methods that account for individual molecules. Herein, we discuss the need for mathematical models and experiments that appreciate the importance of spatial organization in the membrane.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Cell Membrane / metabolism*
  • Humans
  • Models, Theoretical
  • Signal Transduction / physiology*