Epigenetic regulation of genes in learning and memory

Essays Biochem. 2010 Sep 20;48(1):263-74. doi: 10.1042/bse0480263.

Abstract

Rapid advances in the field of epigenetics are revealing a new way to understand how we can form and store strong memories of significant events in our lives. Epigenetic modifications of chromatin, namely the post-translational modifications of nuclear proteins and covalent modification of DNA that regulate gene activity in the CNS (central nervous system), continue to be recognized for their pivotal role in synaptic plasticity and memory formation. At the same time, studies are correlating aberrant epigenetic regulation of gene activity with cognitive dysfunction prevalent in CNS disorders and disease. Epigenetic research, then, offers not only a novel approach to understanding the molecular transcriptional mechanisms underlying experience-induced changes in neural function and behaviour, but potential therapeutic treatments aimed at alleviating cognitive dysfunction. In this chapter, we discuss data regarding epigenetic marking of genes in adult learning and memory formation and impairment thereof, as well as data showcasing the promise for manipulating the epigenome in restoring memory capacity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • DNA Methylation
  • Epigenesis, Genetic*
  • Gene Expression Regulation*
  • Humans
  • Learning*
  • Memory*