Photoluminescence, white light emitting properties and related aspects of ZnO nanoparticles admixed with graphene and GaN

Nanotechnology. 2010 Sep 24;21(38):385701. doi: 10.1088/0957-4484/21/38/385701. Epub 2010 Aug 26.

Abstract

ZnO nanoparticles exhibit a broad band centred around 530 nm in the photoluminescence (PL) spectrum due to the presence of oxygen vacancies. Composites of ZnO nanoparticles with graphenes show marked changes in the PL spectrum with broad bands covering the entire visible region, making them candidates for solid state lighting, while graphene prepared by arc discharge of graphite in a hydrogen atmosphere (HG) containing 2-3 layers as well as boron-doped (BHG) and nitrogen-doped (NHG) samples of HG give white light when admixed with ZnO nanoparticles; excellent results are obtained with the addition of just 7 wt% of BHG to the ZnO nanoparticles. Mixtures of ZnO and GaN nanoparticles also exhibit white light emission. The quantum yields of these ZnO nanoparticle based white light sources are in the 4-6% range. Photoconductivity characteristics of ZnO nanoparticles are affected by the addition of even a small amount of graphene (<0.5 wt%).

Publication types

  • Research Support, Non-U.S. Gov't