In and ex situ studies of the formation of layered microspherical hydrozincite as precursor for ZnO

Chemistry. 2010 Oct 4;16(37):11481-8. doi: 10.1002/chem.201001411.

Abstract

Layered ZnO microspheric particles were prepared by the thermal decomposition of layered hydrozincite (LZnHC), which was synthesized from zinc nitrate and urea in a water/PEG400 mixture. The influence of the starting reagents, their concentrations, and the amount of PEG in the water/PEG400 mixture on the particle growth was observed. The chemical aspect of the particle growth was proposed in the frame of the partial charge model (PCM), and the formation of [Zn(OH)(2)(OH(2))(4)](0) and [Zn(OH)(HCO(3))(OH(2))(3)](0) was predicted for the solid phase. The assumed growth mechanism, which follows the "nonclassical crystallization" concept of a self-assembling mechanism, was observed in situ by small-angle X-ray scattering (SAXS) and predicts the rapid formation of approximately 6 nm sized building units. The size of these nano building units, stable only in the reaction medium, remains nearly constant during the synthesis, as the concentration of the nano building units increases throughout the reaction. The nano building units connect into leaves of LZnHC with a thickness of 20 nm. These leaves of LZnHC are further agglomerated into porous, microsphere-like particles with sizes up to 4 μm.