Landscape genetics: where are we now?

Mol Ecol. 2010 Sep;19(17):3496-514. doi: 10.1111/j.1365-294X.2010.04691.x. Epub 2010 Aug 13.

Abstract

Landscape genetics has seen rapid growth in number of publications since the term was coined in 2003. An extensive literature search from 1998 to 2008 using keywords associated with landscape genetics yielded 655 articles encompassing a vast array of study organisms, study designs and methodology. These publications were screened to identify 174 studies that explicitly incorporated at least one landscape variable with genetic data. We systematically reviewed this set of papers to assess taxonomic and temporal trends in: (i) geographic regions studied; (ii) types of questions addressed; (iii) molecular markers used; (iv) statistical analyses used; and (v) types and nature of spatial data used. Overall, studies have occurred in geographic regions proximal to developed countries and more commonly in terrestrial vs. aquatic habitats. Questions most often focused on effects of barriers and/or landscape variables on gene flow. The most commonly used molecular markers were microsatellites and amplified fragment length polymorphism (AFLPs), with AFLPs used more frequently in plants than animals. Analysis methods were dominated by Mantel and assignment tests. We also assessed differences among journals to evaluate the uniformity of reporting and publication standards. Few studies presented an explicit study design or explicit descriptions of spatial extent. While some landscape variables such as topographic relief affected most species studied, effects were not universal, and some species appeared unaffected by the landscape. Effects of habitat fragmentation were mixed, with some species altering movement paths and others unaffected. Taken together, although some generalities emerged regarding effects of specific landscape variables, results varied, thereby reinforcing the need for species-specific work. We conclude by: highlighting gaps in knowledge and methodology, providing guidelines to authors and reviewers of landscape genetics studies, and suggesting promising future directions of inquiry.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Amplified Fragment Length Polymorphism Analysis
  • Ecology / methods
  • Ecosystem*
  • Gene Flow*
  • Geography
  • Microsatellite Repeats
  • Periodicals as Topic / standards
  • Research Design / trends*