Ultra-large multi-region photon sieves

Opt Express. 2010 Jul 19;18(15):16279-88. doi: 10.1364/OE.18.016279.

Abstract

A novel method of designing ultra-large photon sieves in visible regime with multi-region structure is proposed and experimentally demonstrated. Design principle that is based on both phase matching and total pinhole area matching among regions is introduced. The focusing properties of the multi-region structure and the conventional monolithic structure of the same numerical aperture in terms of energy efficiency and the sidelobe suppression are compared. Two photon sieves of focal length 500 mm and diameters 50mm and 125 mm with respectively 3 and 4 regions at working wavelength 632.8 nm are fabricated using UV lithography to validate the proposed method. Good performance of the multi-region photon sieves are evaluated by imaging test. The extension of the proposed method suggests a new concept of ring-to-ring design in terms of pinhole size and density of each individual ring for photon sieves with superior suppressed sidelobes towards ultra-large dimension, high numerical aperture that can be implemented with UV lithography which is otherwise impossible with e-beam technique.

Publication types

  • Research Support, Non-U.S. Gov't