Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases

J Phys Chem A. 2010 Sep 9;114(35):9507-14. doi: 10.1021/jp102272z.

Abstract

To enable large-scale reactive dynamic simulations of copper oxide/water and copper ion/water interactions we have extended the ReaxFF reactive force field framework to Cu/O/H interactions. To this end, we employed a multistage force field development strategy, where the initial training set (containing metal/metal oxide/metal hydroxide condensed phase data and [Cu(H(2)O)(n)](2+) cluster structures and energies) is augmented by single-point quantum mechanices (QM) energies from [Cu(H(2)O)(n)](2+) clusters abstracted from a ReaxFF molecular dynamics simulation. This provides a convenient strategy to both enrich the training set and to validate the final force field. To further validate the force field description we performed molecular dynamics simulations on Cu(2+)/water systems. We found good agreement between our results and earlier experimental and QM-based molecular dynamics work for the average Cu/water coordination, Jahn-Teller distortion, and inversion in [Cu(H(2)O)(6)](2+) clusters and first- and second-shell O-Cu-O angular distributions, indicating that this force field gives a satisfactory description of the Cu-cation/water interactions. We believe that this force field provides a computationally convenient method for studying the solution and surface chemistry of metal cations and metal oxides and, as such, has applications for studying protein/metal cation complexes, pH-dependent crystal growth/dissolution, and surface catalysis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Copper / chemistry*
  • Hydrogen-Ion Concentration
  • Hydroxides / chemistry*
  • Molecular Dynamics Simulation
  • Quantum Theory
  • Surface Properties
  • Water / chemistry*

Substances

  • Hydroxides
  • copper hydroxide
  • Water
  • Copper
  • cupric oxide