Divergent aging characteristics in CBA/J and CBA/CaJ mouse cochleae

J Assoc Res Otolaryngol. 2010 Dec;11(4):605-23. doi: 10.1007/s10162-010-0228-1. Epub 2010 Aug 13.

Abstract

Two inbred mouse strains, CBA/J and CBA/CaJ, have been used nearly interchangeably as 'good hearing' standards for research in hearing and deafness. We recently reported, however, that these two strains diverge after 1 year of age, such that CBA/CaJ mice show more rapid elevation of compound action potential (CAP) thresholds at high frequencies (Ohlemiller, Brain Res. 1277: 70-83, 2009). One contributor is progressive decline in endocochlear potential (EP) that appears only in CBA/CaJ. Here, we explore the cellular bases of threshold and EP disparities in old CBA/J and CBA/CaJ mice. Among the major findings, both strains exhibit a characteristic age (∼18 months in CBA/J and 24 months in CBA/CaJ) when females overtake males in sensitivity decline. Strain differences in progression of hearing loss are not due to greater hair cell loss in CBA/CaJ, but instead appear to reflect greater neuronal loss, plus more pronounced changes in the lateral wall, leading to EP decline. While both male and female CBA/CaJ show these pathologies, they are more pronounced in females. A novel feature that differed sharply by strain was moderate loss of outer sulcus cells (or 'root' cells) in spiral ligament of the upper basal turn in old CBA/CaJ mice, giving rise to deep indentations and void spaces in the ligament. We conclude that CBA/CaJ mice differ both quantitatively and qualitatively from CBA/J in age-related cochlear pathology, and model different types of presbycusis.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology
  • Aging / pathology*
  • Aging / physiology*
  • Animals
  • Auditory Threshold / physiology
  • Cochlea / pathology*
  • Cochlea / physiology*
  • Disease Models, Animal
  • Evoked Potentials, Auditory / physiology
  • Female
  • Male
  • Mice
  • Mice, Inbred CBA
  • Presbycusis / pathology
  • Presbycusis / physiopathology
  • Sex Characteristics