Parallel habitat specialization within the wolf spider genus Hogna from the Galápagos

Mol Ecol. 2010 Sep;19(18):4029-45. doi: 10.1111/j.1365-294X.2010.04758.x.

Abstract

Within most island archipelagos, such as the Galápagos, similar ecological gradients are found on geographically isolated islands. Species radiations in response to these ecological gradients may follow different scenarios being (i) a single habitat specialization event followed by secondary colonization of each ecotype on the different islands or (ii) repeated and parallel habitat specialization on each island separately. This latter scenario has been considered less likely as gene flow might hamper such ecotypic differentiation. At least for the Galápagos, the extent to which this process is involved in species radiations remains yet poorly understood. Within the wolf spider genus Hogna, seven species are described that can be divided into three different ecotypes based on general morphology and habitat preference i.e. species that inhabit the pampa vegetation in the highlands, species that occur in coastal dry habitats and one generalist species. Comparison of the species phylogeny based on one mitochondrial (COI) and one nuclear (28S) gene fragment convincingly demonstrates that 'pampa' and 'coastal dry' species evolved in parallel on the islands Santa Cruz and San Cristóbal. Despite the observation that allozymes analysis indicated that each species forms a distinct genetic cluster, phylogenetic divergence within these species complexes was very low and paraphyletic and most likely due to hybridization rather than incomplete lineage sorting, as demonstrated for the Santa Cruz species complex. This suggests that within-island speciation occurred under low levels of gene flow. Species phylogeny in general did not follow the progression of island emergence as a molecular clock analysis suggested that island endemic species may have diverged after as well as before the emergence of the islands. This represents the first clear example of parallel and within-island speciation because of habitat specialization on the Galápagos and that such divergence most likely occurred under historic gene flow.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Nucleus / genetics
  • DNA, Mitochondrial / genetics
  • Ecosystem*
  • Ecuador
  • Evolution, Molecular*
  • Gene Flow
  • Genetic Speciation
  • Geography
  • Isoenzymes / genetics
  • Phylogeny*
  • Sequence Analysis, DNA
  • Spiders / genetics*

Substances

  • DNA, Mitochondrial
  • Isoenzymes