An efficient density-functional-theory force evaluation for large molecular systems

J Chem Phys. 2010 Jul 28;133(4):044102. doi: 10.1063/1.3459061.

Abstract

An efficient, linear-scaling implementation of Kohn-Sham density-functional theory for the calculation of molecular forces for systems containing hundreds of atoms is presented. The density-fitted Coulomb force contribution is calculated in linear time by combining atomic integral screening with the continuous fast multipole method. For higher efficiency and greater simplicity, the near-field Coulomb force contribution is calculated by expanding the solid-harmonic Gaussian basis functions in Hermite rather than Cartesian Gaussians. The efficiency and linear complexity of the molecular-force evaluation is demonstrated by sample calculations and applied to the geometry optimization of a few selected large systems.