Serotonin- and two putative serotonin receptors-like immunohistochemical reactivities in the ground crickets Dianemobius nigrofasciatus and Allonemobius allardi

J Insect Physiol. 2010 Nov;56(11):1576-86. doi: 10.1016/j.jinsphys.2010.05.015. Epub 2010 Jun 9.

Abstract

Serotonin (5-hydroxytryptamine; 5-HT)- and two putative serotonin receptors, 5-HT1A- and 5-HT1B-like, immunohistochemical reactivities were investigated in the cephalic ganglia of two ground crickets, Dianemobius nigrofasciatus and Allonemobius allardi. 5-HT-ir was strongly expressed in the central body, accessory medulla region of the optic lobe, frontal ganglion, posterior cortex of the protocerebrum, dorsolateral region of the protocerebrum, and the suboesphageal ganglion (SOG) in both crickets. However, 5-HT1A-ir and 5-HT1B-ir showed quite mutually distinct patterns that were also distinct from 5-HT-ir. 5-HT1A-ir was located in the pars intercerebralis, dorsolateral region of the protocerebrum, optic tract, optic lobe, and the midline of the SOG in both crickets. 5-HT1B-ir was located in the pars intercerebralis and dorsolateral region of the protocerebrum, and detected weakly in the optic lobe, tritocerebrum, and the midline of the SOG in both crickets. Interspecific differences were observed with 5-HT1A-ir. 5-HT1A-ir was expressed weakly in two neurons in the mandibular neuromere of the SOG in D. nigrofasciatus, while it was expressed strongly in the tritocerebrum, mandibular neuromere, and maxillary neuromere of the SOG in A. allardi and co-localized with CLOCK-ir (CLK-ir). 5HT-1B-ir was co-localized with CLK-ir in the tritocerebrum, mandibular neuromere, and maxillary neuromere of the SOG when double-labeling was conducted in both crickets. These results indicated that 5-HT and both types of 5-HT receptors may regulate circadian photo-entrainment or photoperiodism in A. allardi, while only 5-HT1B may be involved in circadian photo-entrainment or photoperiodism in D. nigrofasciatus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Female
  • Ganglia / metabolism
  • Gene Expression Regulation
  • Gryllidae / anatomy & histology
  • Gryllidae / physiology*
  • Immunohistochemistry
  • Insect Proteins / genetics
  • Insect Proteins / metabolism*
  • Male
  • Receptors, Serotonin / metabolism*
  • Serotonin / metabolism*

Substances

  • Insect Proteins
  • Receptors, Serotonin
  • Serotonin