Susceptibility of Candida albicans biofilms to azithromycin, tigecycline and vancomycin and the interaction between tigecycline and antifungals

Int J Antimicrob Agents. 2010 Nov;36(5):441-6. doi: 10.1016/j.ijantimicag.2010.06.034. Epub 2010 Aug 3.

Abstract

Despite growing data on antimicrobial lock therapy (ALT) in treating bacterial catheter-related bloodstream infections (CR-BSIs), ALT has not been established as a treatment option for CR-BSI caused by Candida albicans. Based on our finding that high-dose doxycycline exhibited antifungal activity against mature C. albicans biofilms, we evaluated additional antibacterial agents with Gram-positive activity [azithromycin, tigecycline (TIG) and vancomycin]. After screening these antibiotics, it was found that TIG had substantial antifungal activity against mature C. albicans biofilms. Therefore, TIG was assayed alone and in combination with fluconazole (FLC), amphotericin B (AmB) or caspofungin (CAS). TIG at 2048 μg/mL resulted in a >50% reduction in the growth of planktonic C. albicans cells. TIG inhibited the formation of biofilms from 128 μg/mL. Against mature biofilms, 2048 μg/mL TIG reduced metabolic activity by 84.2%. Furthermore, addition of 512 μg/mL TIG to FLC at all concentrations tested provided additional reduction in the metabolic activity of mature biofilms. However, this was not superior to 512 μg/mL TIG alone. TIG at 512 μg/mL increased the antifungal effect of lower concentrations of AmB (0.03125-0.25 μg/mL), but at 0.03125 μg/mL and 0.0625 μg/mL this effect was not superior to 512 μg/mL TIG alone. TIG inhibited the antifungal effect of higher concentrations of AmB (≥ 2 μg/mL). TIG at 512 μg/mL inhibited the antifungal activity of CAS at lower concentrations (0.25-8 μg/mL). These data indicate that high-dose TIG is highly active in vitro against planktonic cells, forming biofilms and mature biofilms of C. albicans.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anti-Infective Agents / pharmacology*
  • Azithromycin / pharmacology*
  • Biofilms / drug effects*
  • Biofilms / growth & development
  • Candida albicans / drug effects*
  • Candida albicans / growth & development
  • Candida albicans / physiology
  • Drug Interactions
  • Humans
  • Inhibitory Concentration 50
  • Minocycline / analogs & derivatives*
  • Minocycline / pharmacology
  • Tigecycline
  • Vancomycin / pharmacology*

Substances

  • Anti-Infective Agents
  • Vancomycin
  • Tigecycline
  • Azithromycin
  • Minocycline