Crystal structures of two archaeal Pelotas reveal inter-domain structural plasticity

Biochem Biophys Res Commun. 2010 Sep 3;399(4):600-6. doi: 10.1016/j.bbrc.2010.07.121. Epub 2010 Aug 1.

Abstract

Dom34 from Saccharomyces cerevisiae is one of the key players in no-go mRNA decay, a surveillance pathway by which an abnormal mRNA stalled during translation is degraded by an endonucleolytic cleavage. Its homologs called Pelota are found in other species. We showed previously that S. cerevisiae Dom34 (domain 1) has an endoribonuclease activity, which suggests its direct catalytic role in no-go decay. Pelota from Thermoplasma acidophilum and Dom34 from S. cerevisiae have been structurally characterized, revealing a tripartite architecture with a significant difference in their overall conformations. To gain further insights into structural plasticity of the Pelota proteins, we have determined the crystal structures of two archaeal Pelotas from Archaeoglobus fulgidus and Sulfolobus solfataricus. Despite the structural similarity of their individual domains to those of T. acidophilum Pelota and S. cerevisiae Dom34, their overall conformations are distinct from those of T. acidophilum Pelota and S. cerevisiae Dom34. Different overall conformations are due to conformational flexibility of the two linker regions between domains 1 and 2 and between domains 2 and 3. The observed inter-domain structural plasticity of Pelota proteins suggests that large conformational changes are essential for their functions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Archaeal Proteins / chemistry*
  • Archaeal Proteins / genetics
  • Cell Cycle Proteins / chemistry*
  • Cell Cycle Proteins / genetics
  • Crystallography, X-Ray
  • Endoribonucleases / chemistry*
  • Endoribonucleases / genetics
  • Molecular Sequence Data
  • Protein Conformation
  • Saccharomyces cerevisiae Proteins / chemistry*
  • Saccharomyces cerevisiae Proteins / genetics
  • Sequence Alignment
  • Thermoplasma / enzymology*

Substances

  • Archaeal Proteins
  • Cell Cycle Proteins
  • Saccharomyces cerevisiae Proteins
  • Dom34 protein, S cerevisiae
  • Endoribonucleases