Nanopore fabrication in amorphous Si: Viscous flow model and comparison to experiment

J Appl Phys. 2010 Jul 1;108(1):14310. doi: 10.1063/1.3452390. Epub 2010 Jul 7.

Abstract

Nanopores fabricated in free-standing amorphous silicon thin films were observed to close under 3 keV argon ion irradiation. The closing rate, measured in situ, exhibited a memory effect: at the same instantaneous radius, pores that started larger close more slowly. An ion-stimulated viscous flow model is developed and solved in both a simple analytical approximation for the small-deformation limit and in a finite element solution for large deformations. The finite-element solution exhibits surprising changes in cross-section morphology, which may be extremely valuable for single biomolecule detection, and are untested experimentally. The finite-element solution reproduces the shape of the measured nanopore radius versus fluence behavior and the sign and magnitude of the measured memory effect. We discuss aspects of the experimental data not reproduced by the model, and successes and failures of the competing adatom diffusion model.