Neurotoxicity of dibutyltin in aggregating brain cell cultures

Toxicol In Vitro. 1999 Aug-Oct;13(4-5):555-60. doi: 10.1016/s0887-2333(99)00018-1.

Abstract

Dibutyltin (DBT) compounds are used primarily as stabilizers for polyvinyl chloride (PVC) plastics. Small quantities can be released from PVC containers into stored liquids. The neurotoxicological potential of DBT was tested in aggregating brain cell cultures after a 10-day treatment with concentrations ranging from 10(-10) to 10(-6)m, either during an early developmental period, or during a phase of advanced maturation. Changes in protein content, DNA labelling and cell type-specific enzyme activities were measured as end points. DBT caused general cytotoxicity at 10(-6)m in both immature and differentiated cultures. At 10(-7)m, it affected the myelin content and the cholinergic neurons in both states of maturation, while GABAergic neurons remained unchanged. Astrocyte and oligodendrocyte markers were diminished at 10(-7)m of DBT exclusively in immature cultures. DBT uptake by undifferentiated and differentiated cells was similar at this concentration. Whereas trimethyltin (TMT) is known to induce gliosis and triethyltin (TET) to cause demyelination and affect GABAergic neurons, DBT appeared to be more toxic than TMT, and to present a distinct toxicological pattern.