Single-molecule analysis reveals changes in the DNA replication program for the POU5F1 locus upon human embryonic stem cell differentiation

Mol Cell Biol. 2010 Sep;30(18):4521-34. doi: 10.1128/MCB.00380-10. Epub 2010 Jul 20.

Abstract

Human embryonic stem cells (hESCs), due to their pluripotent nature, represent a particularly relevant model system to study the relationship between the replication program and differentiation state. Here, we define the basic properties of the replication program in hESCs and compare them to the programs of hESC-derived multipotent cells (neural rosette cells) and primary differentiated cells (microvascular endothelial cells [MECs]). We characterized three genomic loci: two pluripotency regulatory genes, POU5F1 (OCT4) and NANOG, and the IGH locus, a locus that is transcriptionally active specifically in B-lineage cells. We applied a high-resolution approach to capture images of individual replicated DNA molecules. We demonstrate that for the loci studied, several basic properties of replication, including the average speed of replication forks and the average density of initiation sites, were conserved among the cells analyzed. We also demonstrate, for the first time, the presence of initiation zones in hESCs. However, significant differences were evident in other aspects of replication for the DNA segment containing the POU5F1 gene. Specifically, the locations of centers of initiation zones and the direction of replication fork progression through the POU5F1 gene were conserved in two independent hESC lines but were different in hESC-derived multipotent cells and MECs. Thus, our data identify features of the replication program characteristic of hESCs and define specific changes in replication during hESC differentiation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers / metabolism
  • Cell Differentiation / physiology*
  • Cells, Cultured
  • DNA Replication*
  • Embryonic Stem Cells / cytology
  • Embryonic Stem Cells / physiology*
  • Endothelial Cells / cytology
  • Endothelial Cells / physiology
  • Homeodomain Proteins / genetics
  • Homeodomain Proteins / metabolism
  • Humans
  • Mice
  • Nanog Homeobox Protein
  • Octamer Transcription Factor-3 / genetics*
  • Octamer Transcription Factor-3 / metabolism
  • Pluripotent Stem Cells / cytology
  • Pluripotent Stem Cells / physiology*
  • Transcription, Genetic
  • Transgenes

Substances

  • Biomarkers
  • Homeodomain Proteins
  • NANOG protein, human
  • Nanog Homeobox Protein
  • Octamer Transcription Factor-3
  • POU5F1 protein, human