Gene delivery of sarcoplasmic reticulum calcium ATPase inhibits ventricular remodeling in ischemic mitral regurgitation

Circ Heart Fail. 2010 Sep;3(5):627-34. doi: 10.1161/CIRCHEARTFAILURE.109.891184. Epub 2010 Jul 15.

Abstract

Background: Mitral regurgitation (MR) doubles mortality after myocardial infarction (MI). We have demonstrated that MR worsens remodeling after MI and that early correction reverses remodeling. Sarcoplasmic reticulum Ca(+2)-ATPase (SERCA2a) is downregulated in this process. We hypothesized that upregulating SERCA2a might inhibit remodeling in a surgical model of apical MI (no intrinsic MR) with independent MR-type flow.

Methods and results: In 12 sheep, percutaneous gene delivery was performed by using a validated protocol to perfuse both the left anterior descending and circumflex coronary arteries with occlusion of venous drainage. We administered adeno-associated virus 6 (AAV6) carrying SERCA2a under a Cytomegalovirus promoter control in 6 sheep and a reporter gene in 6 controls. After 2 weeks, a standardized apical MI was created, and a shunt was implanted between the left ventricle and left atrium, producing regurgitant fractions of ≈30%. Animals were compared at baseline and 1 and 3 months by 3D echocardiography, Millar hemodynamics, and biopsies. The SERCA2a group had a well-maintained preload-recruitable stroke work at 3 months (decrease by 8±10% vs 42±12% with reporter gene controls; P<0.001). Left ventricular dP/dt followed the same pattern (no change vs 55% decrease; P<0.001). Left ventricular end-systolic volume was lower with SERCA2a (82.6±9.6 vs 99.4±9.7 mL; P=0.03); left ventricular end-diastolic volume, reflecting volume overload, was not significantly different (127.8±6.2 vs 134.3±9.4 mL). SERCA2a sheep showed a 15% rise in antiapoptotic pAkt versus a 30% reduction with the reporter gene (P<0.001). Prohypertrophic activated STAT3 was also 41% higher with SERCA2a than in controls (P<0.001). Proapoptotic activated caspase-3 rose >5-fold during 1 month in both SERCA2a and control animals (P=NS) and decreased by 19% at 3 months, remaining elevated in both groups.

Conclusions: In this controlled model, upregulating SERCA2a induced better function and lesser remodeling, with improved contractility, smaller volume, and activation of prohypertrophic/antiapoptotic pathways. Although caspase-3 remained activated in both groups, SERCA2a sheep had increased molecular antiremodeling "tone." We therefore conclude that upregulating SERCA2a inhibits MR-induced post-MI remodeling in this model and thus may constitute a useful approach to reduce the vicious circle of remodeling in ischemic MR.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Animals
  • Cytomegalovirus / genetics
  • Dependovirus
  • Disease Models, Animal
  • Echocardiography, Doppler, Color
  • Gene Expression Regulation, Enzymologic
  • Gene Transfer Techniques
  • Genes, Reporter
  • Genetic Therapy / methods*
  • Male
  • Mitral Valve Insufficiency / genetics
  • Mitral Valve Insufficiency / physiopathology
  • Mitral Valve Insufficiency / therapy*
  • Myocardial Ischemia / genetics
  • Myocardial Ischemia / physiopathology
  • Myocardial Ischemia / therapy*
  • Promoter Regions, Genetic
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / genetics*
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / metabolism
  • Sheep
  • Up-Regulation
  • Ventricular Remodeling / genetics*
  • Ventricular Remodeling / physiology*

Substances

  • Sarcoplasmic Reticulum Calcium-Transporting ATPases