Synthesis and Characterization of Monodispersed Copper Colloids in Polar Solvents

Nanoscale Res Lett. 2009 Feb 19;4(5):465-470. doi: 10.1007/s11671-009-9264-3.

Abstract

A chemical reduction method for preparing monodispersed pure-phase copper colloids in water and ethylene glycol has been reported. Owing to the reduction property of ethylene glycol, the reaction rate in ethylene glycol is higher than that in water. In addition, the amount of reducing agent can be reduced largely. Ascorbic acid plays roles as reducing agent and antioxidant of colloidal copper, due to its ability to scavenge free radicals and reactive oxygen molecules. Thermogravimetric results reveal that the as-prepared copper nanoparticles have good stability, and they begin to be oxidized at above 210 degrees C. Polyvinyl pyrrolidone works both as size controller and polymeric capping agents, because it hinders the nuclei from aggregation through the polar groups, which strongly absorb the copper particles on the surface with coordination bonds.