Magnesium Ferrite (MgFe(2)O(4)) Nanostructures Fabricated by Electrospinning

Nanoscale Res Lett. 2008 Dec 16;4(3):221-228. doi: 10.1007/s11671-008-9229-y.

Abstract

Magnesium ferrite (MgFe(2)O(4)) nanostructures were successfully fabricated by electrospinning method. X-ray diffraction, FT-IR, scanning electron microscopy, and transmission electron microscopy revealed that calcination of the as-spun MgFe(2)O(4)/poly(vinyl pyrrolidone) (PVP) composite nanofibers at 500-800 degrees C in air for 2 h resulted in well-developed spinel MgFe(2)O(4) nanostuctures. The crystal structure and morphology of the nanofibers were influenced by the calcination temperature. Crystallite size of the nanoparticles contained in nanofibers increased from 15 +/- 4 to 24 +/- 3 nm when calcination temperature was increased from 500 to 800 degrees C. Room temperature magnetization results showed a ferromagnetic behavior of the calcined MgFe(2)O(4)/PVP composite nanofibers, having their specific saturation magnetization (M(s)) values of 17.0, 20.7, 25.7, and 31.1 emu/g at 10 Oe for the samples calcined at 500, 600, 700, and 800 degrees C, respectively. It is found that the increase in the tendency of M(s) is consistent with the enhancement of crystallinity, and the values of M(s) for the MgFe(2)O(4) samples were observed to increase with increasing crystallite size.