Sub-80 fs dissipative soliton large-mode-area fiber laser

Opt Lett. 2010 Jul 1;35(13):2311-3. doi: 10.1364/OL.35.002311.

Abstract

We report on high-energy ultrashort pulse generation from an all-normal-dispersion large-mode-area fiber laser by exploiting an efficient combination of nonlinear polarization evolution (NPE) and a semiconductor-based saturable absorber mode-locking mechanism. The watt-level laser directly emits chirped pulses with a duration of 1 ps and 163 nJ of pulse energy. These can be compressed to 77 fs, generating megawatt-level peak power. Intracavity dynamics are discussed by numerical simulation, and the intracavity pulse evolution reveals that NPE plays a key role in pulse shaping.