A suspended core nanofiber with unprecedented large diameter ratio of holey region to core

Opt Express. 2010 Apr 26;18(9):9088-97. doi: 10.1364/OE.18.009088.

Abstract

For a suspended core nanofiber, the holey region is expected to be as large as possible to propagate the light at wavelengths as long as possible. Additionally, a large holey region is significant for its applications in sensors. However, the fabrication of nanofiber with large holey region is still a challenge so far. In this paper a method, which involves pumping positive pressure of nitrogen gas in both the cane fabrication and fiber-drawing processes, was proposed. A suspended core nanofiber, with a core diameter of around 480 nm and an unprecedented diameter ratio of holey region to core (DRHC) of at least 62, was fabricated in the length of several hundred meters. Owing to the large holey region, the confinement loss of the suspended core nanofiber is insignificant when the wavelength of light propagated in it is 1700 nm. For this fabrication technique, the nanowire length, fabrication efficiency, and the uniformity in the diameter are much superior to those of the nanowires fabricated in other ways. Finally, single mode third harmonic generation was observed by this nanofiber under the pump of a 1557 nm femtosecond fiber laser. This work shows the prospect of fabrication of nanostructured waveguide in glass materials by an inflation technique.

Publication types

  • Research Support, Non-U.S. Gov't