Scattering properties of sands. 2. Results for sands from different origins

Appl Opt. 2010 Jun 20;49(18):3552-9. doi: 10.1364/AO.49.003552.

Abstract

Mineral sand is a major component of aerosols in the atmosphere. It is necessary to have a laboratory database to interpret the remote sensing measurements of light scattered by such grains. For this purpose, the PROGRA2 experiment is dedicated to the retrieval of polarization and brightness phase curves, in the visible wavelength domain, of various grains that can be found in Earth's atmosphere and in space. The measurements of the scattered light by levitating clouds of grains are conducted at two wavelengths, 632.8 and 543.5nm, with PROGRA2-VIS. Large grains (at least tens of micrometers) are studied in microgravity conditions during parabolic flights; smaller (micrometer-sized) grains are lifted by an air draught in ground-based conditions. The PROGRA2-SURF instrument allows measurements on the grains deposited on a plane surface, at the same wavelengths. New data for the scattering properties are presented for sands of various origins, including fine clay. The polarimetric phase curves for levitating grains are close to each other for all the samples (except for black sands); small discrepancies are mainly due to grains' light absorption differences. The polarization curves for levitating grains differ strongly from those of deposited grains (dry or wet). In particular, these curves can be used to interpret remote sensing measurements to distinguish between grains at ground and grains transported by winds.