Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana under heat stress

Plant Physiol Biochem. 2010 Aug;48(8):697-702. doi: 10.1016/j.plaphy.2010.04.011. Epub 2010 May 11.

Abstract

Calmodulin (CaM), a calcium-regulated protein, regulates the activity of a number of key enzymes and plays important roles in cellular responses to environmental changes. The Arabidopsis thaliana genome contains nine calmodulin (CAM) genes. To understand the role of specific CAM genes in heat stress, the steady-state level of mRNA for the nine CAM genes in root and shoot tissues of seedlings grown at normal growth temperature (25 degrees C) and during heat stress at 42 degrees C for 2h was compared in T-DNA insertional mutant lines of 7 CAM genes and the wild type using gene specific primers and RT-PCR. Compared to growth at 25 degrees C, the mRNA levels of all CAM genes were up-regulated in both root and shoot after heat treatment with the notable exception of CAM5 in root and shoot, and CAM1 in shoot where the mRNA levels were reduced. At 25 degrees C all cam mutants showed varying levels of mRNA for corresponding CAM genes with the highest levels of CAM5 gene mRNA being found in cam5-1 and cam5-3. CAM5 gene mRNA was not observed in the cam5-4 allele which harbors a T-DNA insertion in exon II. The level of respective CAM gene mRNAs were reduced in all cam alleles compared to levels in wild type except for increased expression of CAM5 in roots and shoots of cam5-1 and cam5-3. Compared to wild type, the level of mRNA for all CAM genes varied in each cam mutant, but not in a systematic way. In general, any non-exonic T-DNA insertion produced a decrease in the mRNA levels of the CAM2 and CAM3 genes, and the levels of CAM gene mRNAs were the same as wild type or lower in the cam1, cam4, cam5-2, and cam6-1 non-exonic mutant alleles. However, the level of mRNA for all genes except CAM2 and CAM3 genes was up-regulated in all cam2 and cam3 alleles and in the cam5-1 and cam5-3 alleles. During heat stress at 42 degrees C the level of CAM gene mRNAs were also variable between insertional mutants, but the level of CAM1 and CAM5 gene mRNAs were consistently greater in response to heat stress in both root and shoot. These results suggest differential tissue-specific expression of CAM genes in root and shoot tissues, and specific regulation of CAM gene mRNA levels by heat. Each of the CAM genes appears to contain noncoding regions that play regulatory roles resulting in interaction between CAM genes leading to changes in specific CAM gene mRNA levels in Arabidopsis. Only exonic insertion in CAM5 gene resulted in a loss-of-function of CAM5 gene among the mutants we surveyed in this study.

MeSH terms

  • Arabidopsis / genetics*
  • Arabidopsis Proteins / genetics*
  • Calmodulin / genetics*
  • Gene Expression Profiling
  • Gene Expression Regulation, Plant*
  • Hot Temperature*
  • Multigene Family
  • Mutagenesis, Insertional
  • Mutation*
  • Protein Isoforms / genetics
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • RNA, Plant / genetics
  • RNA, Plant / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • Arabidopsis Proteins
  • Calmodulin
  • Protein Isoforms
  • RNA, Messenger
  • RNA, Plant