Tuneable white fluorescence from intramolecular exciplexes

Phys Chem Chem Phys. 2010 Aug 21;12(31):8804-9. doi: 10.1039/b927232a. Epub 2010 Jun 7.

Abstract

Crystal violet lactone (CVL) in solution displays unusually broad (FWHM > 9100 cm(-1)) dual fluorescence with the characteristics of white light. The emission combines a blue CT band from a local chromophore with an orange CT band from an intramolecular exciplex formed adiabatically at appropriate medium polarity. The fluorescence spectrum can be controlled by solvent polarity to yield tuneable emission colours in a broad range of coordinates in the CIE chromaticity diagram including the white region. We show that such dual emission is a general property of CVL-like D-A structures built on sp(3) carbon atoms. The dependence of excited state energetics on molecular structure allows the prediction of width, shape and other parameters of the dual fluorescence spectrum, and so enables the engineering and customised design of white fluorophores. The photophysics-structure relationship found for CVL and its analogues can be generalized into a novel concept of white light generation by small molecules. These D-A systems are studied as a template basis for design and development of white fluorophores.