The chemical code of porcine enteric neurons and the number of enteric glial cells are altered by dietary probiotics

Neurogastroenterol Motil. 2010 Sep;22(9):e271-8. doi: 10.1111/j.1365-2982.2010.01529.x. Epub 2010 Jun 1.

Abstract

Background: The enteric nervous system (ENS) contains chemically coded populations of neurons that serve specific functions for the control of the gastrointestinal tract. The ability of neurons to modify their chemical code in response to luminal changes has recently been discovered. It is possible that enteric neuronal plasticity may sustain the adaptability of the gut to changes in intestinal activity or injury, and that gut neurons may respond to an altered intestinal environment by changing their neuropeptide expression.

Methods: We used immunohistochemical methods to investigate the presence and localization of several neuronal populations and enteric glia in both the small (ileum) and large (cecum) intestine of piglets. We assessed their abundance in submucosal and myenteric plexus from animals treated with the probiotic Pediococcus acidilactici compared with untreated controls.

Key results: The treated piglets had a larger number of galanin- and calcitonin gene-related peptide (CGRP)-immunoreactive neurons than controls, but this was limited to the submucosal plexus ganglia of the ileum. Moreover, immunohistochemistry revealed that glial fibrillary acidic protein-positive enteric glial cells were significantly higher in the inner and outer submucosal plexuses of treated animals.

Conclusions & inferences: The neuronal and glial changes described here illustrate plasticity of the ENS in response to an altered luminal environment in the gastrointestinal tract.

MeSH terms

  • Animals
  • Calcitonin Gene-Related Peptide / metabolism
  • Cecum / cytology
  • Cecum / metabolism*
  • Cell Count
  • Diet*
  • Enteric Nervous System / cytology
  • Enteric Nervous System / metabolism*
  • Female
  • Galanin / metabolism
  • Ileum / cytology
  • Ileum / metabolism*
  • Immunohistochemistry
  • Neuroglia / metabolism*
  • Neurons / metabolism*
  • Neuropeptide Y / metabolism
  • Nitric Oxide Synthase Type I / metabolism
  • Pediococcus / metabolism
  • Probiotics / metabolism*
  • Substance P / metabolism
  • Swine
  • Vasoactive Intestinal Peptide / metabolism

Substances

  • Neuropeptide Y
  • Substance P
  • Vasoactive Intestinal Peptide
  • Galanin
  • Nitric Oxide Synthase Type I
  • Calcitonin Gene-Related Peptide