Density functional theory study of the magnetic circular dichroism spectra of molybdenyl complexes

Inorg Chem. 2010 Jul 5;49(13):6066-76. doi: 10.1021/ic100624q.

Abstract

We report a density functional theory (DFT) study of the magnetic circular dichroism (MCD) spectra for four molybdenyl complexes: [MoOCl(4)](-), [MoO(S(2)C(2)H(4))(2)](-), [(Tp*)MoO(bdt)], and [(L3S)MoO(bdt)] (Tp* = hydrotris (3,5-dimethyl-1-pyrazolyl) borate; L3S = (2-dimethylethane-thiolate)bis(3,5-dimethylpyrazolyl)-methane; bdt =1,2-benzenedithiolate). The simulation of the temperature dependent MCD-bands (C-terms) that give rise to the spectra was performed using a method based on time-dependent DFT. In this method, the C-parameters are calculated by including spin-orbit perturbations. On the basis of the theoretical calculations, new or additional assignments are made for the MCD spectra of the complexes; specially for [(L3S)MoO(bdt)], for which case only tentative assignments of the excitations have been proposed in recent years.