Factors controlling material deposition in the CVD of nickel sulfides, selenides or phosphides from dichalcogenoimidodiphosphinato complexes: deposition, spectroscopic and computational studies

Dalton Trans. 2010 Jul 14;39(26):6080-91. doi: 10.1039/c002928a. Epub 2010 Jun 1.

Abstract

The series of nickel dichalcogenoimidodiphosphinates [Ni{(i)Pr(2)P(X1)NP(X2)(i)Pr(2)}(2)]: X1 = S, X2 = Se (1), X1 = X2 = S (2), and X1 = X2 = Se (3) have been successfully used as single-source precursors (SSPs) to deposit thin films of nickel sulfide, selenide or phosphide; the material deposited depended on both temperature and method used for the deposition. Aerosol-assisted (AA) chemical vapour deposition (CVD) and low-pressure (LP) CVD were used. The as-deposited films were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). A variety of phases including: Ni(2)P, Ni(0.85)Se and NiS(1.03) were deposited under different conditions. The mechanism of decomposition to the phosphide, selenide, or sulfide was studied by pyrolysis gas chromatography mass spectrometry (Py-GC-MS) and modelled by density functional theory (DFT).