Rheological and functional properties of catfish skin protein hydrolysates

J Food Sci. 2010 Jan-Feb;75(1):E11-7. doi: 10.1111/j.1750-3841.2009.01385.x.

Abstract

Catfish skin is an abundant and underutilized resource that can be used as a unique protein source to make fish skin protein hydrolysates. The objectives of this study were to isolate soluble and insoluble proteins from hydrolyzed catfish skin, study the rheological and functional properties of the protein hydrolysates, and evaluate the properties of emulsions made from the protein powders. Freeze-dried catfish skin soluble (CSSH) and insoluble hydrolysate (CSISH) powders were analyzed for proximate analysis, emulsion stability, fat absorption, amino acids, color, and rheological properties. CSSH had significantly (P < 0.05) higher protein, ash, and moisture content but lower fat content than that of CSISH. The yield of CSSH (21.5%+/- 2.2%) was higher than that of CSISH (3%+/- 0.3%). CSISH had higher emulsion stability than CSSH. CSSH was light yellow in color and CSISH was darker. The mean flow index values for emulsion containing CSSH (ECSSH) and CSISH (ECSISH) were both less than 1, indicating that they were both pseudoplastic fluid. The G' and G'' values for the ECSISH were higher than that of ECSSH, indicating that the viscoelastic characteristic of the emulsion containing CSISH was greater than that of the emulsion containing CSSH. The study demonstrated the CSSH and CSISH had good functional and rheological properties. They have potential uses as functional food ingredients.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acids / analysis
  • Animals
  • Catfishes
  • Color
  • Emulsions
  • Freeze Drying / methods
  • Hydrolysis
  • Protein Hydrolysates / analysis*
  • Rheology
  • Skin / metabolism
  • Solubility

Substances

  • Amino Acids
  • Emulsions
  • Protein Hydrolysates