Demonstration of a quantum-enhanced fiber Sagnac interferometer

Opt Lett. 2010 May 15;35(10):1665-7. doi: 10.1364/OL.35.001665.

Abstract

The injection of squeezed light can be used to improve the sensitivity of an interferometer beyond the limit imposed by the zero-point fluctuation of the electromagnetic field. Here, we report on the realization of such a quantum-enhanced interferometer with a fiber-based Sagnac topology. Continuous wave squeezed states at 1550 nm with a noise reduction of 6.4 dB below shot noise were produced by type I optical parametric amplification and subsequently injected into the dark port of the interferometer. A reduction of the interferometer shot noise by 4.5 dB was observed, and the enhancement of the signal-to-noise ratio for a phase modulation signal generated within the interferometer could be demonstrated. We achieved a 95% fiber transmission for the squeezed states, which suggests that corresponding fiber-based quantum metrology and communication systems are feasible.