Effect of phosphoric acid pretreatment on enzymatic hydrolysis of microcrystalline cellulose

Biotechnol Adv. 2010 Sep-Oct;28(5):613-9. doi: 10.1016/j.biotechadv.2010.05.010. Epub 2010 May 15.

Abstract

Microcrystalline cellulose (MCC) was pretreated with phosphoric acid at 323K for 10h. X-ray diffraction (XRD) and Atomic Force Microscope (AFM) analyses revealed that the fiber surface morphology of pretreated MCC (P-MCC) were uneven and rough with the crystalline diffraction peaks of P-MCC decreased to a distinct range. The X-ray Photoelectron Spectroscopy (XPS) analysis showed that the uneven and rough surface of P-MCC could enhance the adsorption of cellulose to the molecular surface of cellulose, which is one of the key factors affecting enzymatic hydrolysis of cellulose. A reversible first order kinetics was employed to describe the adsorption kinetics of cellulase to MCC and P-MCC, and the adsorption rate constants of MCC and P-MCC were found to be 0.016, 0.024, 0.041, and 0.095, 0.149, 0.218min(-1), respectively at 278K, 293K and 308K. The activation energies of MCC and P-MCC hydrolysis reactions were found to be 22.257 and 19.721kJ mol(-1). The major hydrolysis products of MCC and P-MCC were cellobiose and glucose. Hydrolysis of MCC for 120h resulted in yields of glucose (7.21%), cellobiose (13.16%) and total sugars (20.37%). However, after the pretreatment with phosphoric acid, the corresponding sugar yields resulted from enzymatic hydrolysis of P-MCC were increased to 24.10%, 41.42%, and 65.52%; respectively, which were 3.34, 3.15, and 3.22 times of the sugars yields from enzymatic hydrolysis of MCC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Biotechnology / methods*
  • Cellobiose / chemistry
  • Cellobiose / metabolism
  • Cellulose / chemistry*
  • Cellulose / metabolism
  • Glucose / chemistry
  • Glucose / metabolism
  • Hydrolysis
  • Phosphoric Acids / chemistry*
  • Photoelectron Spectroscopy
  • Surface Properties

Substances

  • Phosphoric Acids
  • Cellobiose
  • Cellulose
  • phosphoric acid
  • Glucose
  • microcrystalline cellulose