Electron flow through metalloproteins

Biochim Biophys Acta. 2010 Sep;1797(9):1563-72. doi: 10.1016/j.bbabio.2010.05.001. Epub 2010 May 9.

Abstract

Electron transfers in photosynthesis and respiration commonly occur between metal-containing cofactors that are separated by large molecular distances. Understanding the underlying physics and chemistry of these biological electron transfer processes is the goal of much of the work in our laboratories. Employing laser flash-quench triggering methods, we have shown that 20A, coupling-limited Fe(II) to Ru(III) and Cu(I) to Ru(III) electron tunneling in Ru-modified cytochromes and blue copper proteins can occur on the microsecond timescale both in solutions and crystals; and, further, that analysis of these rates suggests that distant donor-acceptor electronic couplings are mediated by a combination of sigma and hydrogen bonds in folded polypeptide structures. Redox equivalents can be transferred even longer distances by multistep tunneling, often called hopping, through intervening amino acid side chains. In recent work, we have found that 20A hole hopping through an intervening tryptophan is several hundred-fold faster than single-step electron tunneling in a Re-modified blue copper protein.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Azurin / chemistry
  • Cytochromes / chemistry
  • Electron Transport*
  • Metalloproteins / chemistry*
  • Oxidation-Reduction
  • Protein Folding

Substances

  • Cytochromes
  • Metalloproteins
  • Azurin