Photoelectron imaging and spectroscopy of MI(2)(-) (M = Cs, Cu, Au): evolution from ionic to covalent bonding

J Phys Chem A. 2010 Oct 28;114(42):11244-51. doi: 10.1021/jp103173d.

Abstract

We report a combined experimental and theoretical investigation of MI(2)(-) (M = Cs, Cu, Ag, Au) to explore the chemical bonding in the group IA and IB diiodide complexes. Both photoelectron imaging and low-temperature photoelectron spectroscopy are applied to MI(2)(-) (M = Cs, Cu, Au), yielding vibrationally resolved spectra for CuI(2)(-) and AuI(2)(-) and accurate electron affinities, 4.52 ± 0.02, 4.256 ± 0.010, and 4.226 ± 0.010 eV for CsI(2), CuI(2), and AuI(2), respectively. Spin-orbit coupling is found to be important in all the diiodide complexes and ab initio calculations including spin-orbit effects allow quantitative assignments of the observed photoelectron spectra. A variety of chemical bonding analyses (charge population, bond order, and electron localization functions) have been carried out, revealing a gradual transition from the expected ionic behavior in CsI(2)(-) to relatively strong covalent bonding in AuI(2)(-). Both relativistic effects and electron correlation are shown to enhance the covalency in the gold diiodide complex.