Protonation of kanamycin A: detailing of thermodynamics and protonation sites assignment

Bioorg Chem. 2010 Aug;38(4):173-80. doi: 10.1016/j.bioorg.2010.04.003. Epub 2010 Apr 24.

Abstract

Protonation of an aminoglycoside antibiotic kanamycin A sulfate was studied by potentiometric titrations at variable ionic strength, sulfate concentration and temperature. From these results the association constants of differently protonated forms of kanamycin A with sulfate and enthalpy changes for protonation of each amino group were determined. The protonation of all amino groups of kanamycin A is exothermic, but the protonation enthalpy does not correlate with basicity as in a case of simple polyamines. The sites of stepwise protonation of kanamycin A have been assigned by analysis of (1)H-(13)C-HSQC spectra at variable pH in D(2)O. Plots of chemical shifts for each H and C atom of kanamycin A vs. pH were fitted to the theoretical equation relating them to pK(a) values of ionogenic groups and it was observed that changes in chemical shifts of all atoms in ring C were controlled by ionization of a single amino group with pK(a) 7.98, in ring B by ionization of two amino groups with pK(a) 6.61 and 8.54, but in ring A all atoms felt ionization of one group with pK(a) 9.19 and some atoms felt ionization of a second group with pK(a) 6.51, which therefore should belong to amino group at C3 in ring B positioned closer to the ring A while higher pK(a) 8.54 can be assigned to the group at C1. This resolves the previously existed uncertainty in assignment of protonation sites in rings B and C.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Kanamycin / chemistry*
  • Magnetic Resonance Spectroscopy
  • Potentiometry
  • Protons*
  • Thermodynamics

Substances

  • Protons
  • Kanamycin